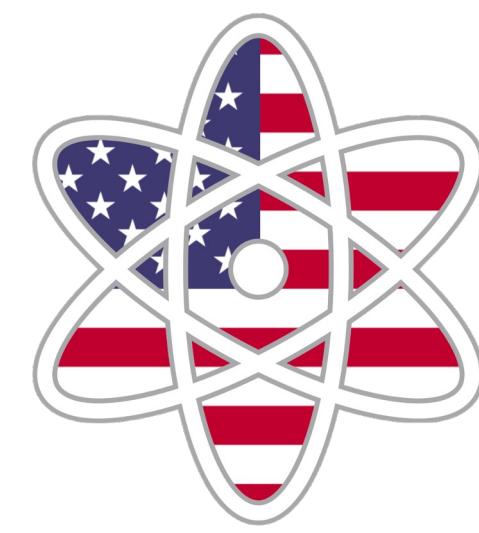


Ergodic Trajectory Optimization at Scale Using Continuous-Space Representations



Christian Sulana

Christian Hughes

Dr. Ian Abraham

Yale ENGINEERING

Coverage-Based Planning on Continuous Occupancy Maps

Motivation

We want robots to fully explore spaces by themselves.

Ergodic exploration methods have been shown to excel at achieving coverage in small to medium-sized spaces [1].

Existing ergodic exploration approaches optimize trajectories using spatial data, such as domain bounds or points that discretize the search space.

However, in large environments where domain bounds are unknown, discrete space representations (e.g., points) require massive amounts of data to maintain high resolution.

Continuous-space representations offer infinite spatial resolution in arbitrarily-sized spaces, but many existing methods lack mathematical tractability for gradient-based optimization methods [3][4].

Challenge: How do we perform coverage-based exploration in large spaces without sacrificing computational speed or resolution?

Approach

Replace cross-similarity term of MMD for proportionality between a discrete trajectory and a utility-biased Hilbert Map [1].

New Objective Function:

$$\mathcal{E}_\mu(x) = \frac{1}{T^2} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} k(x_t, x_{t'}) - \frac{2}{T} \bar{W}_{HM} \sum_{t=0}^{T-1} \sum_{j=0}^{N_c-1} \mathcal{I}(c_j) k(x_t, c_j)$$

T = Trajectory length
 $g(x_t)$: feature representation of x_t
 c_j : inducing points of Hilbert map
 \bar{W}_{HM} : Absolute value of Hilbert map weights

Hilbert maps have smooth gradients → suitable for optimization!

Output of Hilbert maps is probability measure: easily translatable for MMD.

References

- [1] R. Senanayake and F. Ramos, 'Bayesian Hilbert Maps for Dynamic Continuous Occupancy Mapping', in *Proceedings of the 1st Annual Conference on Robot Learning*, 13–15 Nov 2017, vol. 78, pp. 458–471.
- [2] A. Mavrommatis, E. Tzorakleferakis, I. Abraham, and T. D. Murphy, 'Real-Time Area Coverage and Target Localization using Receding-Horizon Ergodic Exploration', *arXiv [cs.RO]*, 2017.
- [3] G. Bahati, R. M. Bena, and A. D. Ames, 'Dynamic Safety in Complex Environments: Synthesizing Safety Filters with Poisson's Equation', *arXiv [cs.RO]*, 2025.
- [4] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srinivasan, 'Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields', *arXiv [cs.CV]*, 2021.

Ergodic Exploration

Ergodic exploration methods seek to proportionally align a robot's visitation time to the utility of a given region.

Over infinite time, ergodic methods guarantee full exploration of all reachable space.

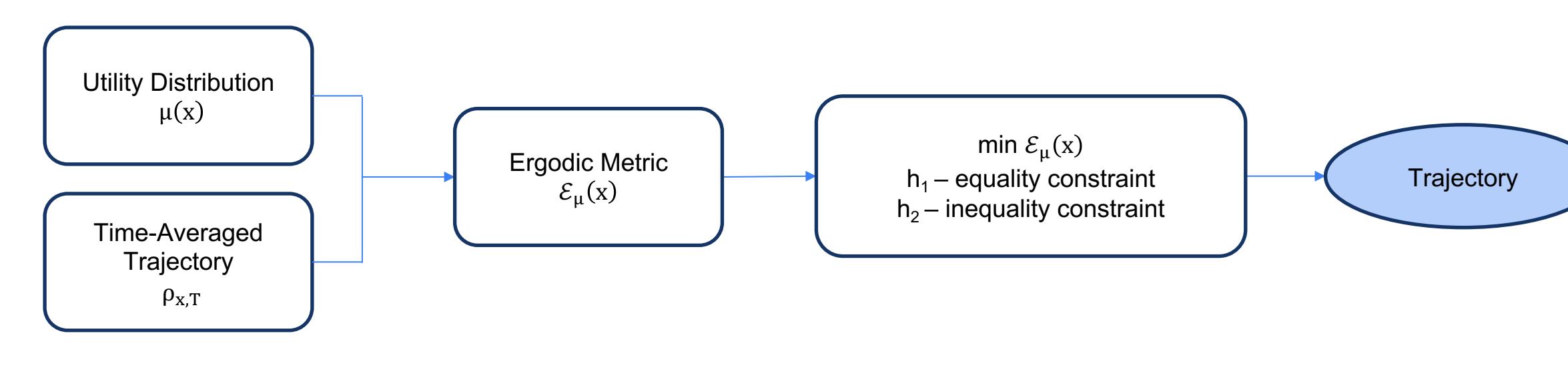
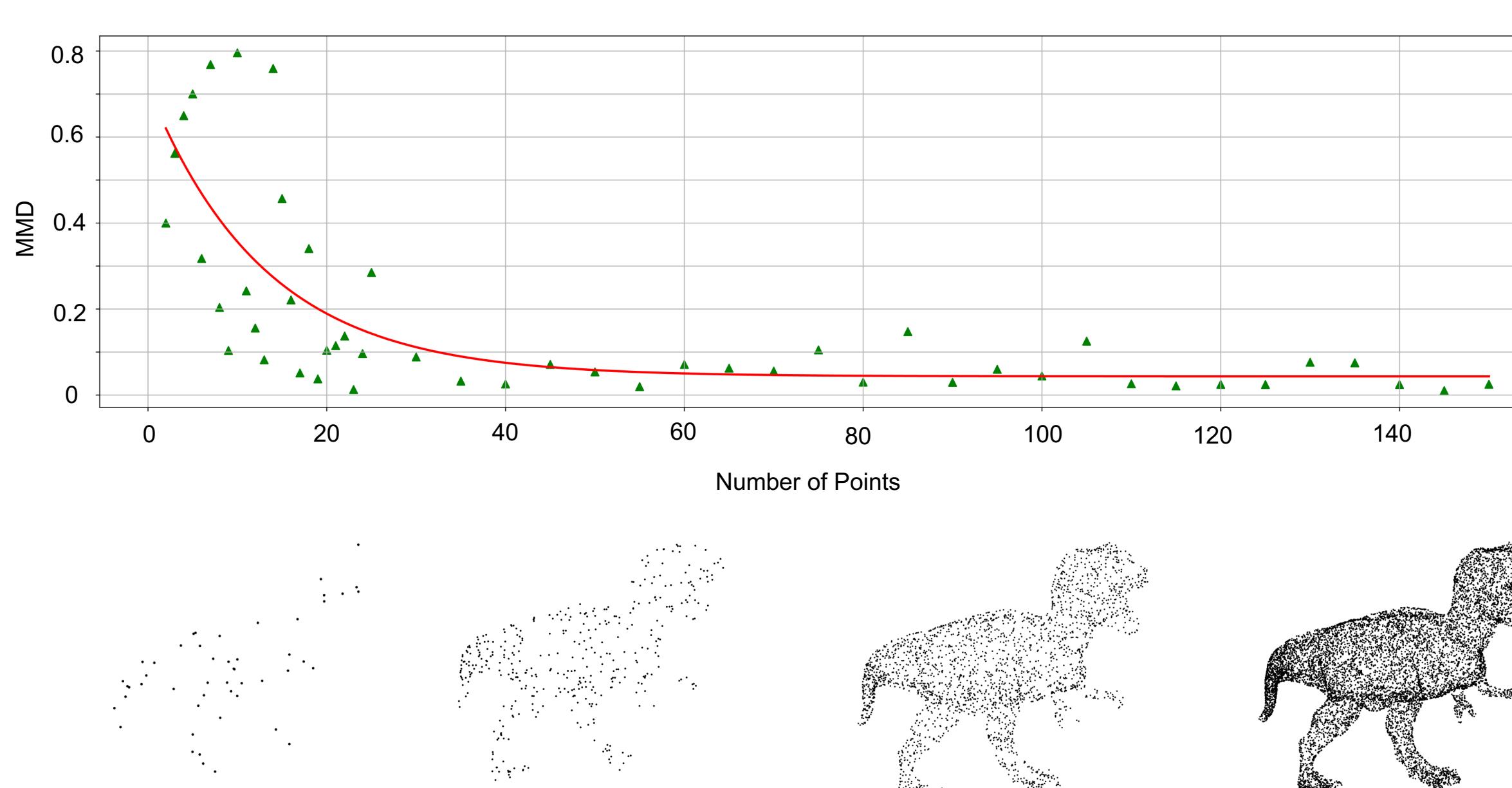


Fig. 1: Impact of Feature Representation on Exploration Quality. Effective exploration relies on accurate representations of the complex features within a space. Discrete space representations have a **minimum threshold of resolution** at which all features are adequately represented (e.g., 8 points to represent a cube), and beyond this point, exploration that respects spatial geometry is not guaranteed.

Ergodic Maximum Mean Discrepancy

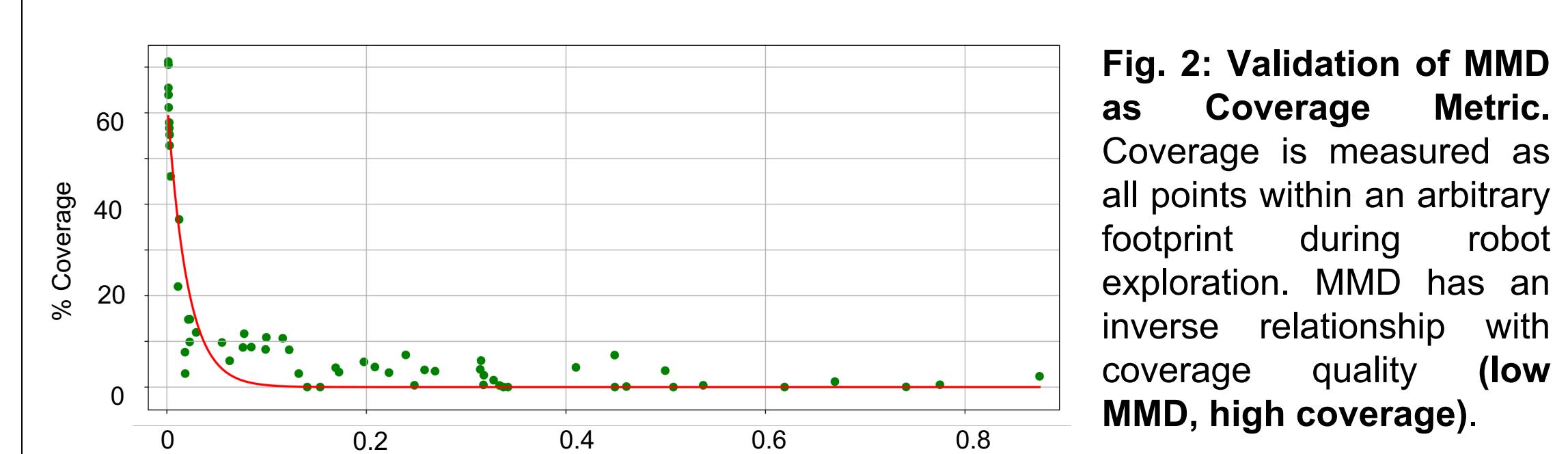
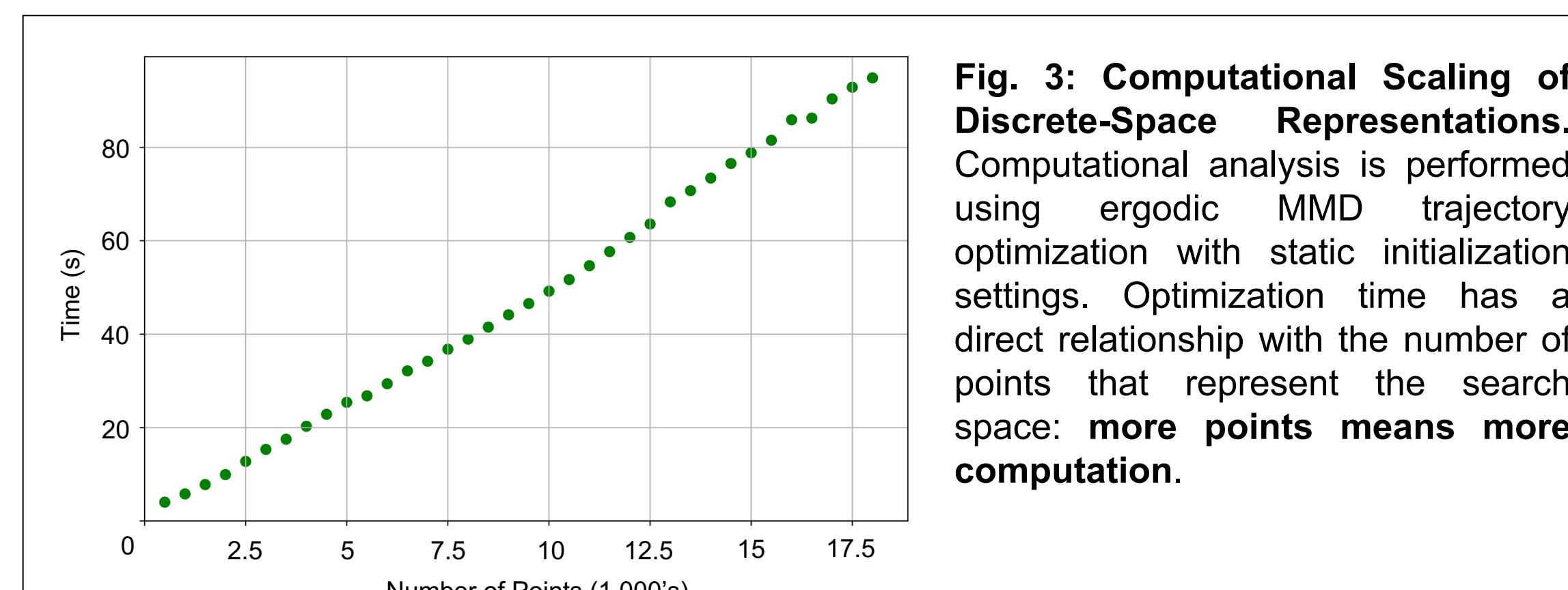
Maximum mean discrepancy (MMD) is a kernel-based (i.e. transform-based) statistical test that measures the difference between two distributions.

Ergodic MMD generates ergodic trajectories by minimizing the MMD between our visitation and the utility of visiting different places.

$$\mathcal{E}_\mu(x) = \text{MMD}_k^2(\rho_{x,T}, \mu(x)) =$$

$$\frac{1}{T^2} \sum_{t=0}^{T-1} \sum_{t'=0}^{T-1} k(g \circ x_t, g \circ x_{t'}) - \frac{2}{TM} \sum_{t=0}^{T-1} \sum_{j=1}^M k(g \circ x_t, \omega_j) + \frac{1}{M^2} \sum_{j=1}^M \sum_{j'=1}^M k(\omega_j, \omega_{j'})$$

Self-Similarity Cross-Similarity $\rho_{x,T}$: Time-Averaged Trajectory $\mu(x)$: Utility Distribution $g(\cdot)$: $\mathcal{X} \rightarrow \Omega$ Ω : Arbitrary Compact Domain



Results

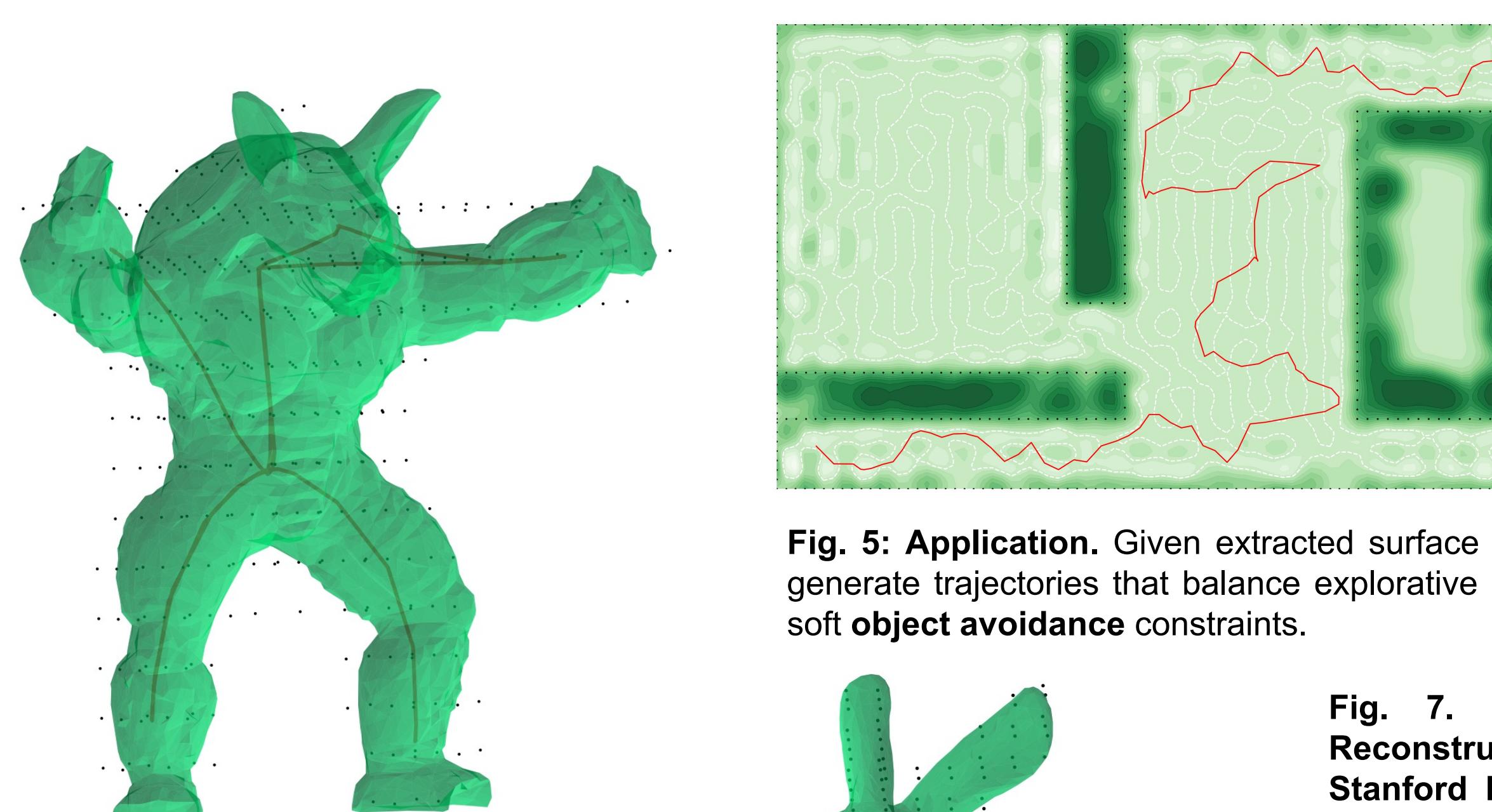


Fig. 5: Application. Given extracted surface data, we can generate trajectories that balance explorative behavior with soft object avoidance constraints.

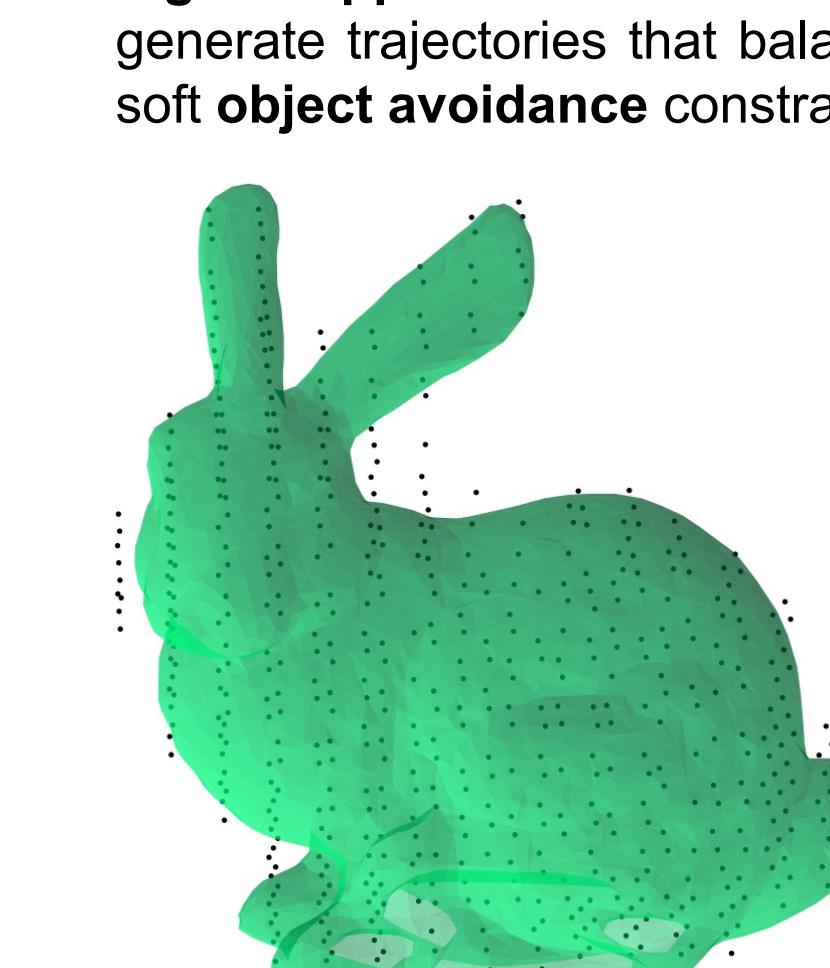
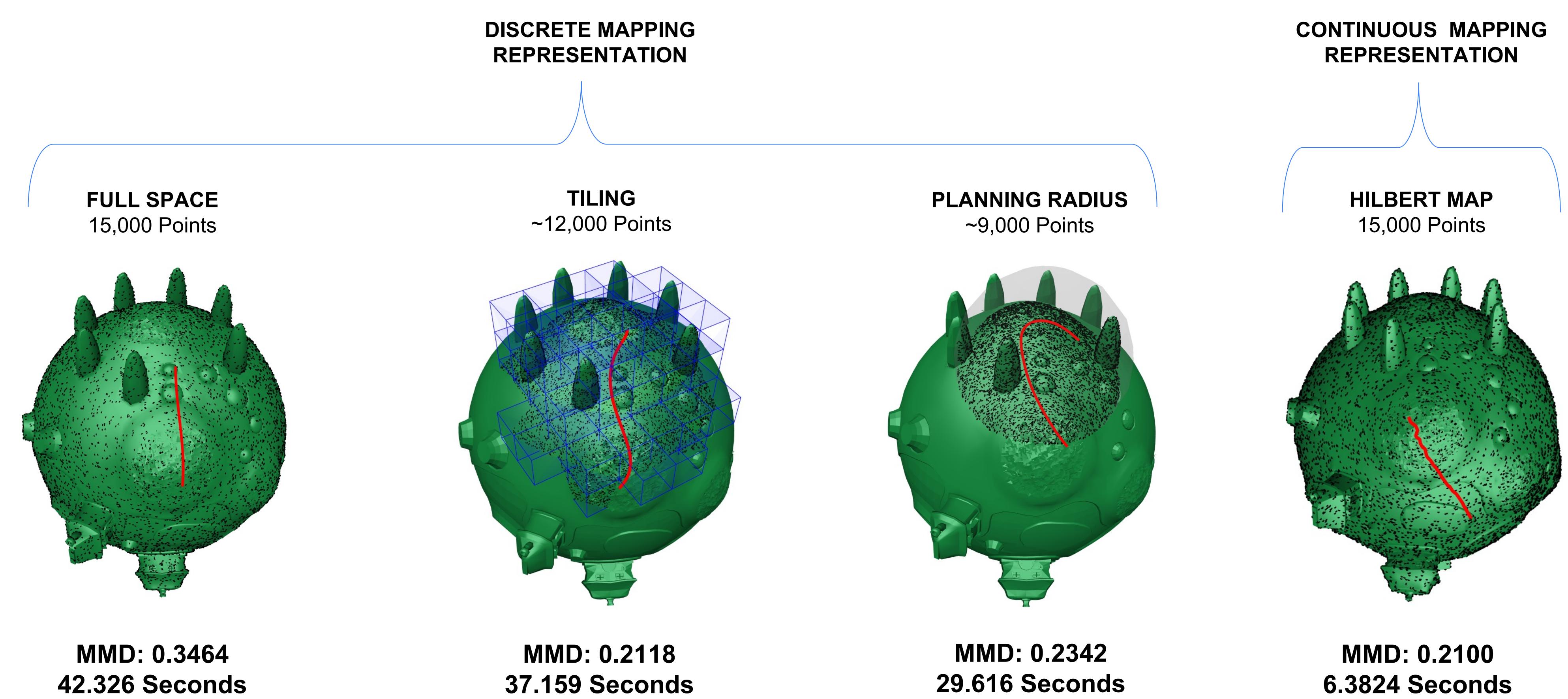


Fig. 7. Hilbert Map Reconstruction of Stanford Bunny Mesh. Hilbert maps provide a measure of the likelihood (probability) that a given location in space is occupied. Surface points (black) represent locations where the probability of occupancy is 70% or greater.



Acknowledgements

My mentor, Christian Hughes. My Principal Investigator, Dr. Ian Abraham.

REVU Director, Dr. Marla Geha. REVU Program Manager, Dr. Jeremy Bradford.

The Students at The Intelligent Autonomy Lab at Yale

These methods represent spaces by fitting points to mathematical representations with infinite resolution.

Signed Distance Functions (SDF's):
Distance from a point to a surface of an object. Negative if inside. Positive if outside.

- Suffers from sharp gradients [3]

Neural Radiance Fields (NeRFs):
Volumetric maps using neural networks to create representation of space.

- Noisy, non-local gradients [4]

Hilbert Maps:
Mapping method that calculates probability of surface presence with infinite resolution. Gaussian process setting kernel function to overlays.

- Retraining requires access to all data in environment

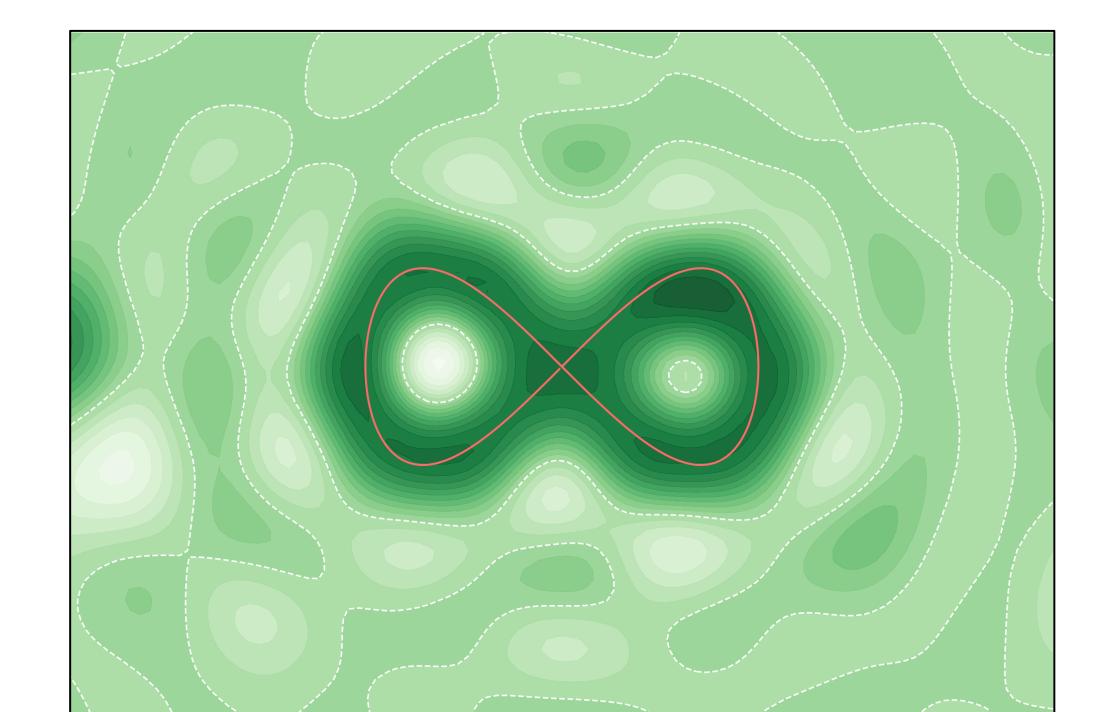


Fig. 4: Hilbert Map Occupancy Contour. Shown right, the points (green) represent where the probability of occupancy is 70% or greater around the infinity symbol. On left, 2D gradient of a Hilbert Map. The darker green shows a higher concentration of points.