
Maximum mean discrepancy (MMD) is a kernel-based (i.e. 
transform-based) statistical test that measures the difference 
between two distributions.

Ergodic MMD generates ergodic trajectories by minimizing the 
MMD between our visitation and the utility of visiting different 
places.

Ergodic Trajectory Optimization at Scale Using Continuous-Space Representations

We want robots to fully explore spaces by 
themselves.

Ergodic exploration methods have been shown to 
excel at achieving coverage in small to medium-
sized spaces [1].

Existing ergodic exploration approaches optimize 
trajectories using spatial data, such as domain 
bounds or points that discretize the search space.

However, in large environments where domain 
bounds are unknown, discrete space 
representations (e.g., points) require massive 
amounts of data to maintain high resolution.

Continuous-space representations offer infinite 
spatial resolution in arbitrarily-sized spaces, but 
many existing methods lack mathematical 
tractability for gradient-based optimization methods 
[3][4]. 

Challenge: How do we perform coverage-based 
exploration in large spaces without sacrificing 
computational speed or resolution?

Coverage-Based Planning on Continuous Occupancy Maps

Motivation

Ergodic exploration methods seek to proportionally align a robot’s 
visitation time to the utility of a given region.

Over infinite time, ergodic methods guarantee full exploration of all 
reachable space.

Ergodic Exploration Ergodic Maximum Mean Discrepancy

These methods represent spaces by fitting points to 
mathematical representations with infinite 
resolution.

Signed Distance Functions (SDF’s):
Distance from a point to a surface of an object. 
Negative if inside. Positive if outside.
 - Suffers from sharp gradients [3]

Neural Radiance Fields (NeRFs):
Volumetric maps using neural networks to create 
representation of space. 
 - Noisy, non-local gradients [4]

Hilbert Maps:
Mapping method that calculates probability of 
surface presence with infinite resolution. Gaussian 
process setting kernel function to overlays.
 - Retraining requires access to all data in 

   environment
 

Continuous Space Representations

References

Replace cross-similarity term of MMD for  
proportionality between a discrete trajectory and a 
utility-biased Hilbert Map [1].

Hilbert maps have smooth gradients →	suitable for 
optimization!

Output of Hilbert maps is probability measure: 
easily translatable for MMD.

Results
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Fig. 1: Impact of Feature Representation on Exploration Quality. Effective exploration relies on 
accurate representations of the complex features within a space. Discrete space representations have 
a minimum threshold of resolution at which all features are adequately represented (e.g., 8 points to 
represent a cube), and beyond this point, exploration that respects spatial geometry is not guaranteed. 
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Fig. 3: Computational Scaling of 
Discrete-Space Representations. 
Computational analysis is performed 
using ergodic MMD trajectory 
optimization with static initialization 
settings. Optimization time has a 
direct relationship with the number of 
points that represent the search 
space: more points means more 
computation. 

Number of Points (1,000’s)

Ti
m

e 
(s

)

0

20

40

60

80

2.5 5 7.5 10 12.5 15 17.5

Fig. 2: Validation of MMD 
as Coverage Metric. 
Coverage is measured as 
all points within an arbitrary 
footprint during robot 
exploration. MMD has an 
inverse relationship with 
coverage quality (low 
MMD, high coverage).
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New Objective Function:
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Fig. 4: Hilbert Map Occupancy Contour.
Shown right, the points (green) represent where the probability of 
occupancy is 70% or greater around the infinity symbol. On left, 2D 
gradient of a Hilbert Map. The darker green shows a higher 
concentration of points.

T = Trajectory length          x : Trajectory point
g(xt) : feature representation of	xt        k(,) : Kernel function
c : Inducing points of Hilbert map         Nc : Number of clusters
0W,): Absolute value of Hilbert map weights     ℐ ∘ : Normalized utility function
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Fig. 8: Comparison of Discrete and Continuous Space Representations on Ergodic Exploration. The computational time required to generate ergodic trajectories 
is a function of the amount of spatial data considered (see Fig. 3). Discrete space representations that strictly consider reachable regions of the environment can 
decrease overall computation requirements with negligible loss in exploration quality, but highly complex spaces may still require large data stores to adequately 
represent spatial geometry. Optimization directly on Hilbert maps allows for similar exploration quality with significant decreases in computational requirements. 
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Fig. 6: Ergodic Trajectory Optimization 
on Reconstructed Hilbert Map. Ergodic 
exploration inside the surface of the 
Stanford Armadillo. Trajectories explore 
various regions of the armadillo given only 
the parameters of the Hilbert map 
reconstruction.

Fig. 7. Hilbert Map 
Reconstruction of 
Stanford Bunny Mesh. 
Hilbert maps provide a 
measure of the 
likelihood (probability) 
that a given location in 
space is occupied. 
Surface points (black) 
represent locations 
where the probability of 
occupancy is 70% or 
greater. 
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Fig. 5: Application. Given extracted surface data, we can 
generate trajectories that balance explorative behavior with 
soft object avoidance constraints.  
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