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Coverage-Based Planning on Continuous Occupancy Maps

Ergodic Maximum Mean Discrepancy Continuous Space Representations

Maximum mean discrepancy (MMD) is a kernel-based (i.e.

We want robots to fully explore spaces by Ergodic exploration methods seek to proportionally align a robot’'s transform-based) statistical test that measures the difference These methods represent spaces by fitting points to

themselves. visitation time to the utility of a given region. between two distributions mathematical representations  with infinite
| resolution.

Ergodic exploration methods have been shown to Over infinite time, ergodic methods guarantee full exploration of all Ergodic MMD generates ergodic trajectories by minimizing the

excel at achieving coverage in small to medium- reachable space. MMD between our visitation and the utility of visiting different Signed Distance Functions (SDF’s):

sized spaces [1]. Distance from a point to a surface of an object.

places.
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However, in large environments where domain Self-Similarity Cross-Similarity representation of space.
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representations (e.g., points) require massive
amounts of data to maintain high resolution. 08 N Fig. 2: Validation of MMD Hilbert Maps:
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. o W optimization with static initialization
0 Lot settings. Optimization time has a
=40 ; ot direct relationship with the number of
“.-' points that represent the search _ e
ApprOaCh Fig. 1: Impact of Feature Representation on Exploration Quality. Effective exploration relies on 20 o space. more points means more Fig. 4: H!Ibert Map Qccupancy Contour. -
) e : : °® - Shown right, the points (green) represent where the probability of
accurate representations of the complex features within a space. Discrete space representations have °® computation. . e
. . : . : o® occupancy is 70% or greater around the infinity symbol. On left, 2D
a minimum threshold of resolution at which all features are adequately represented (e.g., 8 points to - - - - - - - . : :
: : : : : 0 25 5 75 10 125 15 175 gradient of a Hilbert Map. The darker green shows a higher
D represent a cube), and beyond this point, exploration that respects spatial geometry is not guaranteed. : :
Replace cross-similarity term of MMD for Number of Points (1,000’s) concentration of points.
proportionality between a discrete trajectory and a
utility-biased Hilbert Map [1]. Results
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Fig. 5: Application. Given extracted surface data, we can
: : : generate trajectories that balance explorative behavior with
Hlll?erlt maps have smooth gradients — suitable for soft object avoidance constraints.
optimization!
Fig. 7. Hilbert Map
Reconstruction of
Stanford Bunny Mesh.
Hilbert maps provide a
measure of the
likelihood  (probability)
that a given location in

space is  occupied.

Output of Hilbert maps is probability measure:
easily translatable for MMD.

Fig. 6: Ergodic Trajectory Optimization
on Reconstructed Hilbert Map. Ergodic

exploration inside the surface of the
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